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PROBLEM?



Approximately 20,000
earthquakes occurworldwide
eachyear.\Whilemanyaretoo
smalltobefelt,around 100,000
arefelt,and about 100 cause
damage. (USGS)

TODAY, WE TURN OUR FOCUS TO THE DEVASTATING EARTHQUAKE THAT STRUCK GORKHA, NEPAL IN

2015. A TRAGEDY THAT SHOOK THE NATION TO ITS CORE AND LEFT LASTING SCARS ON COUNTLESS
LIVES.



8,896 dead,
198 missing,

&

22,302 injured - millions

left without a home!

Chhetri, M. B. P. (2018). Aftermath of Gorkha—Nepal Earthquake 2015: Lessons Learnt. Oceanography & Fisheries Open Access Journal, 8(2), Article 555735.



https://doi.org/10.19080/OFOAJ.2018.08.555735

Problemwe aretrying tosolve

We aim to develop a predictive model to estimate the damage grade of buildings affected by
an earthquake. Accurately predicting damage levels is crucial for efficient resource allocation,
rapid disaster response, and post-earthquake recovery efforts.

Why?
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helping people get the support they need
quickly.

Kolhe, A. S., & Rathi, V. R. (2024). Al-powered earthquake resilience: Predictive modeling and design optimization for seismic-resistant structures. Nanotechnology
Perceptions, 20(6), 4099-4113. http://www.nano-ntp.com/



http://www.nano-ntp.com/

Potential Applications

e Disaster Response: Quickly identify high-risk areas for aid and rescue.
e Infrastructure Planning: Support earthquake-resistant building

designs.
e Insurance & Risk Assessment: Help insurers assess risks and estimate

damages.

f‘é\ Impact of the Solution

e Faster rebuilding with data-driven decisions.
e Lower financial losses through better planning.
o Safer buildings by identifying weaknesses.
e Improved disaster preparedness for future

j\ earthquakes.
\v/’

Yavas, C. E., Chen, L., Kadlec, C., & Ji, Y. (2024). Improving earthquake prediction accuracy in Los Angeles with machine learning. Scientific Reports, 14, 24440.

https://doi.org/10.1038/s41598-024-76483-Xx



https://doi.org/10.1038/s41598-024-76483-x
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O O Methodology
th ReVIew 1 e Used Gorkha 2015 data (762k+ buildings);

e Preprocessed with scaling, encoding,
SMOTE;
e Engineered features; trained 9 ML

models.

Observations
e RC buildings had least damage;
e Stone/mud had most severe damage;
e Engineered features boosted accuracy.

Performance Metrics
e Used F1, accuracy, recall, precision;
e 3-class damage prediction.

Fig. 8 Machine Learning based RVS method development workflow

1 Bek 2092 : ) Analysis

1] Bektas, N., & Kegyes-Brassai, O. (2024). Developing a machine o o .
learning-based rapid visual screening method for seismic assessment * 13% accuracy (40/0 T vs. RVS)’
of existing buildings on a case study data from the 2015 Gorkha, Nepal e XGBoost, RF best performers;

earthquake. Bulletin of Earthquake Engineering. o Supports scalable risk assessment



Lit Review 2
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Fig 1. Methodology

[2] Chaurasia, Kuldeep & Kanse, Samiksha &
Yewale, Aishwarya & Singh, Vivek & Sharma,
Bhavnish & Burle, Dattu. (2019). Predicting
Damage to Buildings Caused by Earthquakes
Using Machine Learning Techniques. 81-86.
10.1109/IACC48062.2019.8971453.

Methodology
e« Used DrivenData Nepal dataset (38 features);
e« Preprocessing: cleaning, encoding, splitting;
e Models: Neural Network (6 layers), Random Forest (750
trees).

Observations
e Damage graded into 3 levels (low to complete);
e NN showed limited improvement;
e RF handled nonlinear patterns better.

Performance Metric
e Used Micro-averaged F1 Score (balances precision
and recall across 3 classes).
e Neural Network: F1 Score = 62.8%
e Random Forest: F1 Score = 74.32%

Analysis
e RF outperformed NN in accuracy and F1;
e Robust and scalable for fast earthquake damage
prediction.
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Maodel e Preprocessed,encoded,
Farthquale balanced;
Dataset .
Model Testing e Trained RF & XGBoost

with/without demographics.

Structural Data Merging of Data Random Forest [—*Train - Test Split Accuracy

Demographic B o Precision
Data Editing Label XGBoost Cross Validation 2Recall

Parameter and Observations
e e Demographics improved results;
Selection .
o RF favored numeric, XGB

: : o _ favored categorical;
[3] Hasiloglu, Muhammed Ali & Tatar, Tuba. (2022). Prediction of Building Bal . il
Damage Caused by Earthquake with Machine Learning. e balancing was crucial.

PGA & PGV Balancing Data

Figure 1. Flowchart

Metrics Analysis
e RF: 70.83% accuracy, e RF slightly better;
76.36% recall e« Feature selection worked;
e XGB: 70.72%  accuracy, o Effective for quick, low-cost

75.92% recall damage prediction.



TECHNOLoGY

Applying Key Leamings

e Enhancing Accuracy: Real-world applications require higher precision,
especially in identifying severely damaged buildings to prevent loss of
life. We aim to improve model accuracy.

 Addressing Research Gaps: We will work on identified gap and solve it
by making a machine learning model.

e Expanding Model Exploration: Since previous research has tested a
limited number of models, we will explore additional classification
techniques for better performance.




Aboutthe Dataset

General fact: In case of earthquake, run for cover before facebooking about it!



Dataset Overview

e Source: Collected by Kathmandu Living Labs and the Central
Bureau of Statistics under Nepal's National Planning Commission
Secretariat.

e Scope: One of the largest post-disaster datasets, encompassing
information on earthquake impacts, household conditions, and
socio-economic-demographic statistics.

e Objective: Predict the level of damage to buildings caused by the
earthquake based on aspects of building location and construction.

https:/www.drivendata.org/competitions/57/nepal-earthquake/



Dataset

:TEI train_values (2).csv
:TEI train_labels (2).csv

¥l 7 test values (2).csv
= a‘r

2015 Nepal Earthquake Open Data Portal

% Drone Footage Shows Nepal Earthquak... U ~»

Watch later Share

The totality of the data is available through the 2015 Nepal Earthquake Open Data Portal.

In their own words:

Following the 7.8 Mw Gorkha Earthquake on April 25, 2015, Nepal carried out a massive household survey
using mobile technology to assess building damage in the earthquake-affected districts. Although the
primary goal of this survey was to identify beneficiaries eligible for government assistance for housing
reconstruction, it also collected other useful socio-economic information. In addition to housing
reconstruction, this data serves a wide range of uses and users e.g. researchers, newly formed local
governments, and citizens at large. The purpose of this portal is to open this data to the public.

Features: building_id, geo_level 1_id, geo_level 2 _id,
geo_level 3 id, count_floors_pre_eq, age, area_percentage,
height_percentage , land_surface_condition ,
foundation_type, roof_type, ground_floor_type,
other_floor_type , position, plan_configuration,
has_superstructure_adobe_mud,
has_superstructure_mud_mortar_stone,
has_superstructure_stone_flag,
has_superstructure_cement_mortar_stone,
has_superstructure_mud_mortar_brick,
has_superstructure_cement_mortar_brick,
has_superstructure_timber has_superstructure_bamboo,
has_superstructure_rc_non_engineered,
has_superstructure_rc_engineered,
has_superstructure_other legal_ownership_status,
count_families has_secondary_use,
has_secondary_use_agriculture, has_secondary_use_hotel ,
has_secondary_use_rental, has_secondary_use_institution ,
has_secondary_use_school, has_secondary_use_industry,
has_secondary_use_health_post,
has_secondary_use_gov_office,
has_secondary_use_use_police, has_secondary_use_other



DataFiles & More

Training Values (train_values.csv):
e Contains 38 features per building, including structural details (e.g., number of floors before the
earthquake, age, foundation type) and legal information (e.g., ownership status, building use).
e Each building is identified by a unique building_id.DrivenData Labs
Training Labels (train_labels.csv):
e Provides the target variable damage_grade for each building_id:
1: Low damage
2: Medium damage
3: High damage
Test Values (test values.csv):
e Similar structure to the training values but without the damage_grade labels.DrivenData
CommunityDrivenData Labs
Submission Format (submission_format.csv):
e Template for submitting predictions, listing building_id and a placeholder damage_grade (all set to
1). This file is for formatting purposes only and does not contain actual labels.



https://blog.drivendata.org/blog/richters-predictor-benchmark?utm_source=chatgpt.com
https://community.drivendata.org/t/richters-predictor-modeling-earthquake/4295?utm_source=chatgpt.com
https://community.drivendata.org/t/richters-predictor-modeling-earthquake/4295?utm_source=chatgpt.com
https://blog.drivendata.org/blog/richters-predictor-benchmark?utm_source=chatgpt.com

Any Considerations?

e Data Quality: As with many real-world datasets, there may be missing or
inconsistent values. Proper data cleaning and preprocessing are essential.

» Imbalanced Classes: The distribution of damage grades may be skewed,
necessitating techniques like resampling or class weighting.

e Feature Engineering: Creating new features or transforming existing ones can
enhance model performance.

o Evaluation Metric: The competition uses the Micro F1 score to evaluate model
prediction.



Data Preprocessing



Step1: Checkingnullvalues

building id

geo level 1 id
geo level 2 id
geo level 3 id

to prevent errors and ensure the model receives complete
and meaningful data.

count floors pre eq
age

area percentage
height percentage

fig: checking null values
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Step3: Standardization

260596
260597
260598
260599
260600

260601 rows x 61 columns

0.910312
-1.631438
-1.414337
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-1.063003
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-1.228939
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building id geo level 1 id geo level 2 id geo level 3 id count floors pre eq

-0.178274
-0.178274
-0.178274
-0.178274

1.195989

-1.552536
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1.195989

fig: displaying encoded & standardized dataset

ensure all features have a common scale, improving model
performance and convergence.

age area_percentage height percentage

0.047100
-0.224765
-0.224765
-0.224765

0.047100

0.386932
-0.360698
0.386932
-0.224765
-0.224765

-0.459460
-0.004110
-0.687135
-0.459460
-0.004110

-0.459460
-0.459460
-0.459460

1.361941
-0.231785

-0.226419
0.816109
-0.226419
-0.226419
1.858636

-1.268946
-0.226419
0.816109
0.294845
0.294845

WELEARN
GEOLOGY THE
MORNING
AFTERTHE
EARTHQUAKE

-Ralph Emerson



Why?

Step4: SMOTE for Oversampling

SMOTE is used for oversampling to address class imbalance by generating

synthetic examples of the minority class.
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ML Methodology

General Fact: When an earthquake gets emotional, its a really ‘faulty’ outburst!



ML Methods Used and Why?

1.RANDOM FOREST
2.NEURAL NETWORKS
3.XG BOOST

4. CATBOOST
5.LIGHTGBM

We chose to use boosting algorithms and other
models based on insights from prior research
papers, which highlighted these models as top
performers for damage classification tasks. These

studies provided a strong foundation for our I I
approach, as our primary objective was to achieve a . ‘ .. .
high micro averaged F1 score and improve our . . ® 0 o0 . . . ® o
ranking on the leaderboard. Specifically, XGBoost Decision Tree-1 Decision Tree-2 Decision Tree-N

and neural networks consistently emerged as the |

Result-1 Result-2 Result-N

most effective models in similar contexts, guiding
our model selection. :

Final Result




WORKING OF MODELS

e Random Forest: An ensemble of decision trees that combines their predictions through
majority voting (classification) or averaging (regression), improving accuracy and reducing
overfitting.

e Neural Networks: Layered structures of interconnected nodes that learn patterns in data
through weighted transformations and nonlinear activation functions, ideal for complex,
high-dimensional tasks.

e XGBoost: A gradient boosting algorithm that builds trees sequentially, optimizing for speed
and performance by minimizing errors of prior trees using second-order derivatives.

e CatBoost: A gradient boosting method designed to handle categorical features natively and
reduce overfitting using ordered boosting and efficient encoding techniques.

e LightGBM: A fast, memory-efficient gradient boosting framework that grows trees leaf-
wise instead of level-wise, improving accuracy and performance on large datasets.




WORKING OF MODELS

F1 Score (Micro

P ing St
reprocessing Steps Average)

XGBoost + Null check, One-hot encoding,
SMOTE Standardization, SMOTE (multiclass balance)

Null check, One-hot encoding,
XGBoost . o 'ng
Standardization

Null check, One-hot encoding,
CatBoost .
Standardization

Null check, One-hot encoding,
Random Forest r
Standardization

LightGBM Null check, One-hot encoding,

Standardization

Neural Networks Null check, One-hot encoding,
+ SMOTE Standardization, SMOTE (multiclass balance)




Confusion Matrix Confusion Matrix
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Predicted label
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1

1
Predicted label

Predicted label

CatBoost Random Forest




CHALLENGESFACED

We primarily encountered two major challenges:

1.PCA Impact:

When we applied Principal Component Analysis (PCA) for dimensionality reduction, the model's micro-
averaged F1 score dropped significantly compared to training without PCA. This likely occurred
because PCA discarded some important features that were crucial for accurate damage prediction.

Solution: We revised our preprocessing pipeline and removed PCA to retain all original features, which
improved model performance.

2.Class Imbalance:

The dataset was imbalanced, with significantly fewer buildings labeled as damage grade 1 compared to
grades 2 and 3.

Solution: We used SMOTE (Synthetic Minority Over-sampling Technique) to balance the dataset by
generating synthetic examples for the minority class. This helped the model learn better
representations for all classes and led to an increase in the F1 score.

‘M



Performance Metrics
and Deployability




What were the performance metrics and how
muchwere they?

e The competition used the macro-averaged F1 score as the primary evaluation metric.

e Macro-F1 score is the unweighted mean of F1 scores calculated per class (across the three
damage severity classes: 1 — minor damage, 2 — moderate damage, and 3 — significant
damage).

How do these performance metrics show that
your solution works?

e The macro F1 score reflects both precision and recall across all damage classes:
Precision: How many of the predicted damages were correct?
Recall: How many actual damages were correctly identified?
e A high F1 score here means our model accurately predicted all damage levels, handled class
imbalance well, and generalized across regions and building types without overfitting.




What may be some challengesforthe
deployed solution whenit will scale up?

 Data Quality & Availability: Real-world data may be noisy, incomplete, or
inconsistent compared to the training dataset.

e Class Imbalance: New regions might have different distributions of damage
classes, making the model less effective without retraining.

e Generalization: The model may struggle to generalize to new building types,
materials, or geographic contexts not seen during training.

e Infrastructure Requirements: Processing large volumes of data in real time (e.g.,
post-disaster) may require significant computational resources.

e Model Drift: Over time, changes in construction practices or damage patterns may
reduce model accuracy if it's not regularly updated.

e Interpretability & Trust: In high-stakes situations, such as disaster response,
decision-makers may require clear explanations of model predictions.



WHEREDOWESTANDIN
THELEADERBOARD?

Best score Current rank

1321 #1263




#earthquake
to people:

Main akhri/baar éya hun




