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PROBLEM?



Approximately 20,000
earthquakes occur worldwide
each year. While many are too
small to be felt, around 100,000
are felt, and about 100 cause
damage.  (USGS)

TODAY, WE TURN OUR FOCUS TO THE DEVASTATING EARTHQUAKE THAT STRUCK GORKHA, NEPAL IN
2015. A TRAGEDY THAT SHOOK THE NATION TO ITS CORE AND LEFT LASTING SCARS ON COUNTLESS
LIVES.



8,896 dead,
198 missing,

22,302 injured - millions
left without a home!

&

Chhetri, M. B. P. (2018). Aftermath of Gorkha–Nepal Earthquake 2015: Lessons Learnt. Oceanography & Fisheries Open Access Journal, 8(2), Article 555735.
https://doi.org/10.19080/OFOAJ.2018.08.555735

https://doi.org/10.19080/OFOAJ.2018.08.555735


Problem we are trying to solve
We aim to develop a predictive model to estimate the damage grade of buildings affected by
an earthquake. Accurately predicting damage levels is crucial for efficient resource allocation,
rapid disaster response, and post-earthquake recovery efforts.

Why?
Earthquakes cause massive destruction, leading
to loss of life, injuries, and loss of homes.
Traditional methods of seismic design, while
effective to a degree often rely on static models
and empirical data that may not fully capture
the complexities of modern construction and
the dynamic nature of earthquakes.
A data-driven approach can make the process
faster, more accurate, and more efficient—
helping people get the support they need
quickly.

Kolhe, A. S., & Rathi, V. R. (2024). AI-powered earthquake resilience: Predictive modeling and design optimization for seismic-resistant structures. Nanotechnology
Perceptions, 20(6), 4099–4113. http://www.nano-ntp.com/

http://www.nano-ntp.com/


Potential Applications
Disaster Response: Quickly identify high-risk areas for aid and rescue.
Infrastructure Planning: Support earthquake-resistant building
designs.
Insurance & Risk Assessment: Help insurers assess risks and estimate
damages.

Impact of the Solution
Faster rebuilding with data-driven decisions.
Lower financial losses through better planning.
Safer buildings by identifying weaknesses.
Improved disaster preparedness for future
earthquakes.

Yavas, C. E., Chen, L., Kadlec, C., & Ji, Y. (2024). Improving earthquake prediction accuracy in Los Angeles with machine learning. Scientific Reports, 14, 24440.
https://doi.org/10.1038/s41598-024-76483-x

https://doi.org/10.1038/s41598-024-76483-x


Literature
Survey
Building damage from earthquakes poses serious risks to lives and
causes major financial losses. To mitigate these risks, it is crucial to
assess the fragility of buildings and implement necessary
precautions.
Yeh, C.-H., Jean, W.-Y., & Loh, C.-H. (n.d.). Building damage assessment for earthquake loss estimation in Taiwan. National
Center for Research on Earthquake Engineering.



Lit Review 1 05Methodology
Used Gorkha 2015 data (762k+ buildings);
 Preprocessed with scaling, encoding,
SMOTE;
 Engineered features; trained 9 ML
models.

Observations
RC buildings had least damage;
 Stone/mud had most severe damage;
 Engineered features boosted accuracy.

[1] Bektaş, N., & Kegyes-Brassai, O. (2024). Developing a machine
learning-based rapid visual screening method for seismic assessment
of existing buildings on a case study data from the 2015 Gorkha, Nepal
earthquake. Bulletin of Earthquake Engineering. 

Performance Metrics
Used F1, accuracy, recall, precision;
 3-class damage prediction.

Analysis
73% accuracy (40% ↑ vs. RVS);
 XGBoost, RF best performers;
 Supports scalable risk assessment.



Lit Review 2 Methodology
Used DrivenData Nepal dataset (38 features);
 Preprocessing: cleaning, encoding, splitting;
 Models: Neural Network (6 layers), Random Forest (750
trees).

[2] Chaurasia, Kuldeep & Kanse, Samiksha &
Yewale, Aishwarya & Singh, Vivek & Sharma,
Bhavnish & Burle, Dattu. (2019). Predicting
Damage to Buildings Caused by Earthquakes
Using Machine Learning Techniques. 81-86.
10.1109/IACC48062.2019.8971453. 

Observations
Damage graded into 3 levels (low to complete);
 NN showed limited improvement;
 RF handled nonlinear patterns better.

Performance Metric
Used Micro-averaged F1 Score (balances precision
and recall across 3 classes).
Neural Network: F1 Score = 62.8%
Random Forest: F1 Score = 74.32%

Analysis
RF outperformed NN in accuracy and F1;
 Robust and scalable for fast earthquake damage
prediction.



Lit Review 3 Methodology
Used Gorkha 2015 data (~800k
buildings);
Preprocessed,encoded,
balanced;
Trained RF & XGBoost
with/without demographics.

[3] Hasiloglu, Muhammed Ali & Tatar, Tuba. (2022). Prediction of Building
Damage Caused by Earthquake with Machine Learning. 

Observations
Demographics improved results;
 RF favored numeric, XGB
favored categorical;
 Balancing was crucial.

Metrics
RF: 70.83% accuracy,
76.36% recall
XGB: 70.72% accuracy,
75.92% recall

Analysis
RF slightly better;
 Feature selection worked;
Effective for quick, low-cost
damage prediction.



Enhancing Accuracy: Real-world applications require higher precision,
especially in identifying severely damaged buildings to prevent loss of
life. We aim to improve model accuracy.
Addressing Research Gaps: We will work on identified gap and solve it
by making a machine learning model.
Expanding Model Exploration: Since previous research has tested a
limited number of models, we will explore additional classification
techniques for better performance.

Applying Key Learnings



About the Dataset

General fact: In case of earthquake, run for cover before facebooking about it!



Dataset Overview 

Source: Collected by Kathmandu Living Labs and the Central
Bureau of Statistics under Nepal's National Planning Commission
Secretariat.
Scope: One of the largest post-disaster datasets, encompassing
information on earthquake impacts, household conditions, and
socio-economic-demographic statistics.
Objective: Predict the level of damage to buildings caused by the
earthquake based on aspects of building location and construction.

https://www.drivendata.org/competitions/57/nepal-earthquake/



Dataset
Features: building_id, geo_level_1_id, geo_level_2_id,
geo_level_3_id, count_floors_pre_eq, age, area_percentage,
height_percentage , land_surface_condition ,
foundation_type, roof_type, ground_floor_type,
other_floor_type , position,  plan_configuration,
has_superstructure_adobe_mud,
has_superstructure_mud_mortar_stone,
has_superstructure_stone_flag ,
has_superstructure_cement_mortar_stone,
has_superstructure_mud_mortar_brick,
has_superstructure_cement_mortar_brick,
has_superstructure_timber has_superstructure_bamboo,
has_superstructure_rc_non_engineered,
has_superstructure_rc_engineered,
has_superstructure_other legal_ownership_status,
count_families has_secondary_use,
has_secondary_use_agriculture,  has_secondary_use_hotel ,
has_secondary_use_rental,  has_secondary_use_institution ,
has_secondary_use_school,  has_secondary_use_industry,
has_secondary_use_health_post,
has_secondary_use_gov_office,
has_secondary_use_use_police,  has_secondary_use_other



Data Files & More
Training Values (train_values.csv):

Contains 38 features per building, including structural details (e.g., number of floors before the
earthquake, age, foundation type) and legal information (e.g., ownership status, building use).
Each building is identified by a unique building_id.DrivenData Labs

Training Labels (train_labels.csv):
Provides the target variable damage_grade for each building_id:

            1: Low damage
            2: Medium damage
            3: High damage
Test Values (test_values.csv):

Similar structure to the training values but without the damage_grade labels.DrivenData
CommunityDrivenData Labs

Submission Format (submission_format.csv):
Template for submitting predictions, listing building_id and a placeholder damage_grade (all set to
1). This file is for formatting purposes only and does not contain actual labels.

https://blog.drivendata.org/blog/richters-predictor-benchmark?utm_source=chatgpt.com
https://community.drivendata.org/t/richters-predictor-modeling-earthquake/4295?utm_source=chatgpt.com
https://community.drivendata.org/t/richters-predictor-modeling-earthquake/4295?utm_source=chatgpt.com
https://blog.drivendata.org/blog/richters-predictor-benchmark?utm_source=chatgpt.com


Any Considerations?

Data Quality: As with many real-world datasets, there may be missing or
inconsistent values. Proper data cleaning and preprocessing are essential.
Imbalanced Classes: The distribution of damage grades may be skewed,
necessitating techniques like resampling or class weighting.
Feature Engineering: Creating new features or transforming existing ones can
enhance model performance.
Evaluation Metric: The competition uses the Micro F1 score to evaluate model
prediction.



Data Preprocessing



Step1 :  Checking null values

to prevent errors and ensure the model receives complete
and meaningful data.

Step2 :  Encoding

One hot encoding is done when
dealing with the categorical data.
Creates a new binary column for
each category.
Puts a 1 in the column for the
corresponding category, and 0 for
others.

fig: dataset picture
fig: checking null values



Step3 :  Standardization

ensure all features have a common scale, improving model
performance and convergence.

fig: displaying encoded & standardized dataset

WE LEARN
GEOLOGY THE
MORNING
AFTER THE
EARTHQUAKE
-Ralph Emerson



Step4 :  SMOTE  for  Oversampling
Why?

SMOTE is used for oversampling to address class imbalance by generating
synthetic examples of the minority class.

fig: before SMOTE - class imbalance fig: after SMOTE 



ML Methodology

General Fact: When an earthquake gets emotional, its a really ‘faulty’ outburst! 



ML Methods Used and Why?
1.RANDOM FOREST
2.NEURAL NETWORKS
3.XG BOOST
4.CATBOOST
5.LIGHTGBM

We chose to use boosting algorithms and other
models based on insights from prior research
papers, which highlighted these models as top
performers for damage classification tasks. These
studies provided a strong foundation for our
approach, as our primary objective was to achieve a
high micro averaged F1 score and improve our
ranking on the leaderboard. Specifically, XGBoost
and neural networks consistently emerged as the
most effective models in similar contexts, guiding
our model selection.



Random Forest: An ensemble of decision trees that combines their predictions through
majority voting (classification) or averaging (regression), improving accuracy and reducing
overfitting.

Neural Networks: Layered structures of interconnected nodes that learn patterns in data
through weighted transformations and nonlinear activation functions, ideal for complex,
high-dimensional tasks.

XGBoost: A gradient boosting algorithm that builds trees sequentially, optimizing for speed
and performance by minimizing errors of prior trees using second-order derivatives.

CatBoost: A gradient boosting method designed to handle categorical features natively and
reduce overfitting using ordered boosting and efficient encoding techniques.

LightGBM: A fast, memory-efficient gradient boosting framework that grows trees leaf-
wise instead of level-wise, improving accuracy and performance on large datasets.

WORKING OF MODELS



WORKING OF MODELS



XG Boost + SMOTE
Neural Network

CatBoost Random Forest



We primarily encountered two major challenges:

1.PCA Impact:
When we applied Principal Component Analysis (PCA) for dimensionality reduction, the model's micro-
averaged F1 score dropped significantly compared to training without PCA. This likely occurred
because PCA discarded some important features that were crucial for accurate damage prediction. 

Solution: We revised our preprocessing pipeline and removed PCA to retain all original features, which
improved model performance.

  2.Class Imbalance:
The dataset was imbalanced, with significantly fewer buildings labeled as damage grade 1 compared to
grades 2 and 3.

Solution: We used SMOTE (Synthetic Minority Over-sampling Technique) to balance the dataset by
generating synthetic examples for the minority class. This helped the model learn better
representations for all classes and led to an increase in the F1 score.

CHALLENGES FACED



Performance Metrics
and Deployability



What were the performance metrics and how
much were they?

The competition used the macro-averaged F1 score as the primary evaluation metric.
Macro-F1 score is the unweighted mean of F1 scores calculated per class (across the three
damage severity classes: 1 – minor damage, 2 – moderate damage, and 3 – significant
damage).

How do these performance metrics show that
your solution works?

The macro F1 score reflects both precision and recall across all damage classes:
          Precision: How many of the predicted damages were correct?
          Recall: How many actual damages were correctly identified?

A high F1 score here means our model accurately predicted all damage levels, handled class
imbalance well, and generalized across regions and building types without overfitting.



What may be some challenges for the
deployed solution when it will scale up?

Data Quality & Availability: Real-world data may be noisy, incomplete, or
inconsistent compared to the training dataset.
Class Imbalance: New regions might have different distributions of damage
classes, making the model less effective without retraining.
Generalization: The model may struggle to generalize to new building types,
materials, or geographic contexts not seen during training.
Infrastructure Requirements: Processing large volumes of data in real time (e.g.,
post-disaster) may require significant computational resources.
Model Drift: Over time, changes in construction practices or damage patterns may
reduce model accuracy if it's not regularly updated.
Interpretability & Trust: In high-stakes situations, such as disaster response,
decision-makers may require clear explanations of model predictions.



WHERE DO WE STAND IN
THE LEADERBOARD?



Thank you!


